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and its applications ’ '
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Bunkyo-ku, Tokyo 112, Japan
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Abstract. Duality relations, which associate two Markov processes in different state spaces,
have been useful tools in the study of the long-term behaviour of the stochastic processes of
spin systems. In 1986, Gray introduced a new duality theory which is applicable to general
spin systems with attractive transition rates. The theory was developed by making full use of
graphical representations. In the present paper, Gray’s duality is reformulated by studying the
action of the formal generators on 2 newly chosen duality function and the dual processes defined
in the state space T = {4 : A is a finite subset of ¥} are discussed, where Y is a collection
of finite subsets of Z%. As applications of the submodularity of the survival probability o(4)
of the dual processes, rigorous lower bounds of the critical values are derived for the £-contact
process, the muiti-particle creation model and the sexuval reproduction process.

1. Introduction

There are two types of duality relations, both of which have been useful tools in the
study of spin systems. One of them'is the high-temperature/low-temperature duality, based
on the duality transformations of lattices, which gives an exact evaluation of the critical
temperatures for many equilibrium lattice models in statistical mechanics (see, for example,
Baxter 1982). The other is the study of the stochastic processes of spin systems which
associates two Markov processes in different state spaces. In the present paper, we consider
the latter duality. .

A general definition of this duality is the following (see section IL.3 of Liggett (1985)).
Suppose 7, and £; are Markov processes with state spaces X and ¥, respectively, and let
H(n, ¢) be a bounded measurable function on X x ¥. The processes 7, and ¢; are said to
be dual to one another with respect to H if

E"[H(1:, §)] = E [H(n, &)} (1.1

for all n € X and ¢ € Y. Here the LHS represents the expectation of H{n;, -) for the
process 1, € X starting from the configuration n and the RHS represents that of H(:, {;) for
¢ starting from ¢.

The interacting particle systems in which we are interested are usvally Markov processes
on an uncountable space X = {0, 1}° with, for example, S = Z¢: the d-dimensional hyper-
cubic lattice. A useful duality theory relates them to Markov chains in which the state space
Y is a countable set. Sometimes the dual process is more tractable than the original process.

Depending on the choice of duality function H, there are several types of duality theory.
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When we analyse a spin system, we use one of these theories if we can find an appropriate
simple duality function H.

In our previous paper (Katori and Konno 1993), we used a coalescing duality to study
the family of one-dimensional contact processes first investigated by Durrett and Griffeath
{1983), which we simply called the #-contact process (or 8-Cp for short). The 6-Cp, n;, is a
one-dimensional spin system in which the state space is X = {0, 1}Z. The system evolves
by the following single-spin-flip dynamics.

(i) If n,-(x) =1, then 7,(x) =0 at arate 1.

(i) If n,-(x)} = 0, then n;(x) =1 at the rate f(N.(¢7)) which depends on the number
of the nearest-neighbour patticles Ny(t ) = np-(x — D+ g-(x + 1) as

0 ifN=0
fWy=44 if N=1 (1.2)
oA fN=2

Here A and @ are non-negative parameters. This process can be viewed as a simple model
of the spread of infection of a disease. The parameter A is the infection rate when only one
of the neighbours is infected (N, = 1), The parameter  is the ratio of the infection rate in
the case N, = 2 (both neighbours are infected) to that in the case N, = 1. The coalescing
dual process is defined on the state space

¥ ={A: A is a finite subset of Z} (1.3)

and corresponds to the choice of H as

Ho(n, A = [ (1 = nGx)). (1.4)

xEA

It is easy to show that the 8-Cp has a coalescing dual process if, and only if, 1 < 6 < 2.
We extended the method of Griffeath (1975) and the Holley-Liggett argument {1978) to
derive the rigorous lower and upper bounds for the critical line A = A (6} which divides
the extinction phase and the survival phase. Since all of these arguments were based on a
coalescing duality, our bounds were only valid for the case 1 £ @ £ 2 (Katori and Konno
1993). )

As this example shows, the coalescing duality is a powerful tool in the study of the
long-term behaviour of the spin- systems; however, it can only be applied to some special
cases. The problem is whether we can define another duality which will cover a larger class
of spin systems. In 1986, Gray introduced a new theory for dual processes which can be
applied to more general spin systems. His theory is applicable to all attractive gpin systems
with any finite-range interactions in any dimensions (Gray 1986). Following this, we can
define Gray’s dual process for the 8-cp for all # > 1 (the @-CP is attractive iff ¢ > 1).

Gray’s duality theory was developed by making full use of the graphical constructions
(Gray 1986). This procedure enables us to define both the original spin system and the
dual process on the same spatio-temporal hyper-plane, Z¢ x [0, t). On the other hand, there
is another standard method for introducing a spin system by defining the comesponding
Markov semigroup S(t} from the formal generator Q. The formal generator is given if we
specify the flip rate ¢(x, 1) as a function of the spin configuration (see the next section and
Liggett (1985)). Therefore, if we follow the latter procedure, we can discuss Gray’s duality
formally by only treating the formal generators. That is, we can reformulate Gray’s duality
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theory by choosing a new duality function H and by observing the action of Q on it. The
state space of Gray’s dual process is given by

T = {A4: Ais a finite subset of ¥}. (1.5)

The new choice of H is

Hen, =[] (1 - ]'[n(x)). (1.6)

AsA XA

Although the state space T is much larger than the state space ¥ of the coalescing dual
process, it is still countable,

In the present paper, we will explain how we can reformulate Gray's duality theory
by using the formal generator £2 and (1.6} for general attractive spin systems. Almost ail
the results concerning this general duality were given in the original paper by Gray (1986).
Our representation, however, is more similar to that for coalescing dual processes on ¥ and
enables us to extend the methods originally used by us to Gray’s dual processes. In fact, we
can develop Griffeath’s method (1975) to give the conditions for the extinction of processes
in our framework. We define the survival probabilities o (4) for Gray’s dual processes and
use their generalized version of submodularity. As an application, we will show that our
lower bounds for A (#) of 8-CP derived in the previous paper {Katori and Konno 1993) is
valid not only for 1 € @ < 2 but aiso for ¢ > 2. We will also give some lower bounds
for the critical values of one-dimensional multi-particle creation models (recently studied
by Dickman and Tomé (1991) and Durrett and Neuvhauvser (1994)), and the d-dimensional
sexual reproduction processes (Noble 1992); peither of these have dual processes in the
previous version.

The paper is organized as follows. In section 2, we reformulate Gray’s duality by using
some basic properties of H given by (1.6) when the formal generator Q2 is applied. In
" section 3, we briefly review the duality relations and some theorems originally given by
Gray (1986) in our framework. Section 4 is devoted to showing some applications of the
present duality theory, which is similar to Griffeath’s method (1975). Some comments are
given in section 5.

2. General attractive spin systems and their dual processes

2.1. Formal generators

We consider a class of continnous-time Markov processes, 1;, on the d-dimensional hyper-
cubic lattice Z4. Each site x € Z? is occupied by either a particle (1, (x) = 1) or a vacancy
{n,(x) = 0). That is, the state space is X = {0, I}Zd. Let C(X) be a set of continuous
functions on X. We assume that the process follows single-spin-flip dynamics. Such an
interacting particle system in which each coordinate has two possible values and only one
coordinate changes in each transition is often called a spir system. A spin system is defined
in the standard method as follows (Liggett 1985). The formal generator 2 on C(X) for a
spin system is given as

QFm) =Y clx, MIFOT) — F(n)] 2.1)

xe2d



3194 Muakoto Katori

for f € C{X), where
I—nx) ifu=1x
7t () = .
n{u) if u# x.
If the flip rate c(x, n) is appropriately chosen, the Markov semigroup S() is defined by Q
as

(2.2}

S()f = lim (1 - ig)— f 2.3)

for f € C(X) and ¢t > 0, where [ is the identity operator. There is a unique Markov
process 7, correSpondmg to S(#), such that

S@Y ) = E"fn)] (24)
and
%E" Lf (7)) = E"[S2f (90)] (2.5

forall feC(X),neXandt 2 0.

In this paper we assume that the flip rate is attractive: whenever n < ¢, c(x,n) € ¢(x, ¢)
if n{x) = 2(x) = 0 and clx,n) 2 clx, &) if n(x) £{x) = 1, and that it has a
finite range: there is a finite set of sites R, C Z* such that ¢(x, ) depends only on

= {n(y) : y € Ry U {x}} for each x. Such a flip rate is specified if we give the
dependence of c(x, n) on X, as below. We call a non-empty subset in Ry a region and
let R be a collection of these regions. We introduce an equivalence relation among the
regions and this can be written as A; ~ By for' 4;, By € ;. We let R, be the collection
of all equivalence classes determined by this relation: Ry = Ry/ ~. We assume that if
n{x) = 0 and if all sites of at least one of the regions, which is equivalent to A, € R, are
occupied by particles, then a rate Y a, 20 is added to ¢(x, 7). If n{x) = | and if at least

one site is vacated in all eguivalent regions to B, € R, then a rate dm 2 0 is added to
¢(x, ). We also assume that spin flip occurs spontaneously at a rate b , if p{x) =0, and
at a rate 4’ if #(x) = 1. The spin-flip rate is thus assumed to be written in the form

erx, my = (1 -—n(x))[b%”Jr > bﬁf[I - T1 (1— 11 ??(y)) ”

A ER, Byr~Ay yeB,

+n(x>[az§”+ > 4P T] (1 - T n(y))} (2.6)

Az E:’-Zx Be~Ay yEB,

where bé“, {ng)}, d(l), and {dfe} are non-negative parameters. By choosing a set of these
parameters appropriately, any type of attractive finite-ranged flip rates can be represented
in this form.

It should be noted that when there are some simple relations among the parameters
{b(”} and {dA I, respectively, the flip rate c1{x, i} given above is reduced to the following
s1mpler form:

ealx, ) = (1~ n(x))[bg]+ > 62> 11 ﬂ(y)]

Ay e'i-?',‘ By~Ay yeB,
+n(X)[dé2)+ > AR (1 -1 ncy))] @.7)
Axeﬁ; ByreAy yeB,

with some non-negative parameters bg ), {bg";) | dézJ and {dﬁ)}.
We will give some examples below.
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Example I. The 8-cPwith = 1. The 8-CP is the one-dimensional spin system with its
spin-flip rate given by

ex, n) =M1 =GN — D+ nx + 1 — C—0nix — Dnlx + D} + n(x). (2.8)

It is easy to confirm that this can be expressed in the form (2.6) if we choose the range and
the parameters as follows. Let

Re={x—1,x+1} 2.9)
and
Re={lx+1L{x—Lx+1}} (2.10)
with {x — 1} ~ {x + 1}, and let
0 if Ay =0
by = [k if Ay = {x+1) @.11)
© — DA if Ay = {x —1,x+ 1}

and

4 = [ : if A, =0 (2.12)

As 0 otherwise.

Example 2. The one-dimensional n-particle creation model. Dickman and Tomé (1991)
studied, by using computer simulations, the one-dimensional particle systems with spin-flip
rates given by the following when n = 2 and 3:

elx, ) =M1~ n(x))[ [Trc = +]]ntx +i)] + n(x). (2.13)
i=1 i=1

This process was introduced to model autocatalytic chemical reactions. When n = 1 it is
merely the basic contact process (i.e. 8 = 2 case of example 1), This flip rate is written in
the form c2(x, ), given by (2.7), when we put

bf?:{l lfo=-{x+1,x+2,...,x+n} 2.14)
= 0 otherwise .
1 if A, =
dP = { A =0 2.15)
* 0] otherwise

and assume that {x —#n,....x =2, x=1}~{x+1,x+2,...,x +nh

Remark 2.1. Dickman and Tomé (1991) simulated a more general case where creation and
annihilation of particles occurred with the rates (2.13) and each particle could hop to one of
its neighbour sites, with a rate D, if it was vacant. The asymptotic behaviour of the process
when this diffusion rate D — oo was investigated by Durrett and Neuhauser (1994), Here
we consider the case D = 0. We will comment in section 5 on the diffusive case.
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Example 3. The d-dimensional sexual reproduction process. When n = 2, the above
process is sometimes called the (one-dimensional) sexual reproduction process (SRP). It was
studied by Noble (1992) when the diffusion rate D — ¢0. The d-dimensional version of
the SRP is defined by the following flip rate on the lattice Z¢ in the case D = 0,

cEm=rl—n@) Y. Y Mm@ +nx). (2.16)

¥ly—x|=1z:|z—yl=1,25x

It is also written in the form cz(x, 0}, given by (2.7), when we put

bf): {?\. 1fo='{x+e;,x+231} (2'17)
f 0 otherwise

d? = { b A= (2.18)
* 0 otherwise

and assume that {y,z} ~ {x + e;,x + 2e;} for all y and z such that |y — x| = 1 and
[z—y|=1,z # x, where ¢; = (1,0,...,0).

Example 4. The stochastic Ising model with ferromagnetic interaction. The spin-flip rate
for the one-dimensional stochastic Ising model with nearest-neighbour interactions is usually
given by (Glauber 1963, Suzuki and Kubo 1968)

c(x, n) = %_[l —s(x)tanh{h + K(s{x — 1)+ s(x + 1))}] {2.19)

where s(x) = 2n(x) — 1 € {—1,1}. Here # = gH and K = BJ where H is the external
field, J the exchange interaction and 8 = 1/kgT the inverse temperature It is easy to
confirm that it can be written in the form ¢;(x, 7), given by (2.6), when R, and R, are
given in the same way as example 1, with {x — 1} ~ {x 4 1} and

1(1 — tanh(2K — &) if A; =0
1 - oA

bf;j — 5 (tanh(2K — k) 4 tanh k) ifA, ={x+1} (2.20)
1(tanh(2K + &) — tanh k) if Ay ={x~1,x+1}
0 otherwise

and

1(1 — tanh 2K + ) ifA, =8
1 - if A, =

40 = 1{tanh(2K — k) + tanh ) if Ay = {x+ 1} @.21)

3(tanh(2K -+ &) — tanh ) A ={x—1Lx+1}
0 otherwise,

When the interaction is ferromagnetic (J > 0), bﬂj = 0 and dfilj 2 0: in this example,

bén # 0. The generalization for the case with long-range interactions, or for higher
dimensions, is straightforward.
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2.2, Notation

We will treat a collection T of finite subsets of ¥. The elements of T will be denoted by
A, B,... €Y. They are a collection of sets of sites, for example,

A={B, {21}, {xr, 2, {0, 03, 25}

B = {{x1}, {x2}, {x1, x2}} (2.22)
where x; € Z%. An empty set in T is denoted by @ and it should be distinguished from {@}
which contains one element, an empty set of ¥.

We will write the union of .A and B which contains all the elements of A and B as
AU B. For example,

A UB= {Es {xl}s {x2}s {xl! 12}, {x2s X3, XS}} (223)

for .4 and B given by (2.22). In the same way, when we write ANBor A\Bfor A, Be T,
they should be interpreted as the intersection and the difference in the sense of the sets in
T (see lemma 4.1).
For a fixed site x € Z¢, each A € T is partitioned as
A= Ax)U A(x)° (2.24)
with
AX)={Ae A:x e A} Ax)*={Ae A:x & Al (2.25)

Then we introduce the following operators, a, and r.{B), which operate on the elements
of T:

ay A= Ax)". (2.26)
Let B € ¥, then

z(B)A = (rz(B)A(x)) U A(x)° (2.27)
with

r:(BYAX) = {(A\{xDUB : A € A(x)}. (2.28)
If A(x) =@, we assume r.(B)A = A, That is, a, annihilates all sets in .A which contain a
site x and 7, (B) replaces each set A in A, which contains x, by the set which is obtained
from A by removing x and adding B. We will use the following abbreviations:

(r<(B1) Urx(BaDA = (rx(B1)A) U (r:(B2) A) (2.29)

and
(U rx(B,-)) A= J=(B) A (2.30)

for AeT,B; Y.
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2.3. Dual process

In order to introduce Gray’s duality, we choose the following duality function H(z, A) on
X xT:

n(l_—nn(x)) iff¢.4and A0

H "A = 1 Acd xeA 231
@4 0 ifA>0 @30
1 fAd=0

fornpe X,
For convenience, we introduce here some nrotation for combinations of operators. For
e1(x, ) we define

Ri(Ay) = r({xh U ( U rx(Bx)) (2.32)
Benehie
and
Sitdn = | n(x}UB) 2.33)
BrAs

for each A, € R... For ca(x, ) we define
Ry(Ay) = re({x}) Ur:(Ay) and $2(Ag) =r({x} U Ay) (2.34)

for each A, e R,.
We then obtain the following fundamental identities.

Proposition 2.1. Assume that the formal generators £2; and £, are given by (2.1) and (2.2)

with the flip rates ¢;(x, %) in the form (2.6) and c2(x, 1) in the form (2.7), respectively.
Then forany € X, A,

HM A= Y {bé”[H(n,rx(ﬁ)A)—H(n,A)]

xeZd:A(x)#a

+ > BRIHED, Ri(a)A — Hip, AL+ 0 H (0, axA) — H(n, A)]
ALy

+ Z dﬁ?[H (1, Si(A)A) — H (n,A)]} (2.35)
A eR,

and
QH@, A= ) [béf’[mﬂ,rx(mA)—ch.A)]
xeZ A(x)#D
+ 3 BY N (Hn, Re(B)A) — H(, Al +d5" [H(, ax Ay~ Hn, A)}

A‘Eﬁ.‘. By~Ag

+ Y 4P Y H Sz(Bx)A)—H(n,A)]]. 2.36)

Ax Eﬁ, By~Ax
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The proof is given in appendix A.
We write the following collections of the operators by @; (i = 1, 2) as

Q1(x) = {r:(®), ax} U {R1(Ax) 1 A e RIJU(Si(An) 1 Ax € Re) (237)
and

Qo(x) = {rx (@), ax} U{Ra(4s) : Ax € ReJU{S1(A) 1 A € Re). (2.38)
We let p;(r (@) = b, pi(a,) = df’ fori = 1,2

pRI(AN =T pi(Sian =4 2.39)
for Ax € 7-'\3.,,, and

P(R(B) =D pa(SxB) =dP (2.40)
for each B, € R, such that B, ~ A, with A, € R,. Then we define for 4, Be Y

g4, B= > Y. pilge) (241)
x: Alx)#8 g €Qi(x)g. A=5

foreach case i =1,2.
Then (2.35) and (2.36) can be written in the form

%H@, A=) a(A BIH®, B) — H(n, A)] (2.42)
B

for i = 1, 2. Since g;(.A, B) are non-negative, they can be interpreted as the transition rates
for a continuous-time Markov chain 4, on T. Since we have assumed that the range of
interactions R, is finite for any x & Z¢, this Markov chain is non-explosive.

‘We thus obtain the following main theorem.

Theorem 2.2. Let i, be an attractive spin system with flip rates c(x, n) given in the form
{2.6) or (2.7) and let .A, be a Markov chain on T with transition rates g(.4, B) given by
(2.41). Then forevery ne X, AeTandt 20

E"[H(n;, Al = EALH(n, A1 (2.43)

It is easy to ohserve that the dual process A; of 5, defined above with respect to (2.31)
is equivalent to that defined by Gray (1986) using graphical representations.

Remark 2.2. It should be remarked here that if A; 3 @ at some time s > 0, then 4, 2 @
for all ¢ > s since there is no such operator in Q;(x) that removes the element & from A4,.
On the other hand, if 5§’ = 0 and & ¢ A, then & ¢ A, for all # > 0. The condition 53’ =0
is the prohibition of the spontaneous creation of particles in the original spin systems.
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3. Duality relations

From now on we will assume that

b =0, 3.1
Let
To={AeT:0&.A} (3.2)

As mentioned in remark 2.2, if A € Ty then A, € Yy for all £ > O under the condition
(3.1). For convenience, we assume that if A =@ then [],.,- = 1. Then, by theorem 2.2
and the choice of (2.31) for H, we obtain the following identity for n € X, A € T and
t20

(-l (-] e

AcA XEA AcA; xEA

It is easy to see that if 7 = 1 then

1  ifB=0
IT (1 -T1 n(x)) = [ . G4

AcB A otherwise.

Therefore, if we put n = 1 in (3.3} we obtain

E' [ I1 (1 -11 n:(x)):| =PAA=1) (3.5)

AeAd x€A

or equivalently

P%A¢m=1—E“jO—[h@0} (3.6)

AcA TEA

Then we take the limit z — oo in (3.6). Since we assume that the process is attractive there
exists an upper invariant measure (Liggett 1985)

= lim 81 8(2) 3.7
f=>00

where 8, is the point-mass distribution on 7 = 1 and S(z) is the Markov semigroup defined
from the generator Q by (2.3). We can thus define the survival probability for the dual
process A; by

o(A) = lim PA(A #8) (38)

for A € Tp. The following is a corollary of theorem 2.2.
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Corollary 3.1. For Ae Ty

(A =1~ ém [ i1 (1 ~-11 n(x))]. {(39)

AeA XEA

In particutar, for Ac Y, A # 40

a{{AD) = E,, {1_[ n(x):[ = pi{n:n(x) =1 for all x € A} (3.10)

xeA

and for x € Z¢
a({{x}}) = Eu[n(x)] = pafn : n(x) = 1}. (3.11)

‘When bg ) = 0, the lower invariant measure, itg = lim, o 805(2) (8 is a point-mass
distribution on 5 = 0), is 8¢ In this case it is proved that the unique stationary state is a
trivial absorbing state & if, and only if, u; = 8 (Liggett 1985). If ug = 8y, the RHS of
(3.11) is zero. However, if the RHS of (3.11) is positive, then ; % dp. Therefore we obtain
the next theorem.

Theorem 3.2.
o({{x1h) = 0= w1 =& (3.12)
o({{x}}) > 0 <> u1 # &. (3.13)
Remark 3.1. This theorem was given as statements (30} and (31) in Gray (1986).

Next we will provide a lemma which gives the identities between the survival
probabilities. Let u(z, A) = PA(A; % @) for A € To. By (2.5), (2.42) and using the
duality refation (3.6) twice

d d 1
= —~E'[QH (5, A)]
=3 qi{(A Bl - E'[H (., B} - {1 — E'[H(, A}
B
=" gi(A B)lult, B) — ult, AL (3.14)
8
By the definition of (3.8), we can conclude that the survival probability o (A) satisfied the
following identity.
Lemma 3.3. Forall 4 &Y
D @A, BloB) —o(H] =0. (3.15)
B
Remark 3.2. Before ending this section, we remark that the present duality of Gray includes

the coalescing duality as a special case. Consider the case when A is a collection of
singletons in ¥

A=), bl () @3.16)
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with x; € Z¢%, 1 € i < n. For such .4, by definition (2.31),

Hn A =]] (1 -TI n(x)) =TT —n6 (3.17)

BeA x&B xeA

when we let A = {x;, x2,...,x,}. Let T be a collection of .As which are given in the form
(3.16) with some # 2 1, i.e. the collections of singletons in ¥. Then each element A in T
can be identified with set A = {x;,x2,...,x,} € ¥ and

H(n, Ay = He(n, A) (3.18)
where H; is the coalescing duality function given in (1.4). Therefore, if the time evolution
of A, 1s given such that A, € T for all ¢ > 0, then it is identified with the coalescing dual
process A, defined in Y.

4, Submodularity of o(.A) and its applications

It is easy to prove that the survival probability o (,4) satisfies the following inequality which
is called submodularity.

Lemma 4.1. The survival probability defined by (3.8) for a dual process A4, € Ty of the
spin system with bg = 0 is submodular in the sense that

o(AUB)+o(ANB) < o(4) +o(B) (4.1
whenever A, B € Y.

Proof. Leth(n,A) =1 —[[,canx) forn e X,A € Y. Since A(n, A) € {0, 1} for any
neX, Ae’t,

{1— I1 h(n,A)}x I] h(n,B)x{l— ]‘[ h(n,C)]ao 4.2)

AcA\B BeAnB CeB\A
for A, B € To. This is rewritten in the form
[T aon &+ [] 24y =[] e, &+ ] R(r, A). 43)
AeAUB AcANB AcA AcB
On the other hand, for A € T,
oM =1- Eml: I1#e. A)] @4
AeAd
by the duality relation (3.9). Then (4.1) follows (4.3). a

Combining the identities given by lemma 3.3 and the inequalities between the o (A)s
given by lemma 4.1, we can obtain the criteria for o{{{x}}) = 0 in some dual processes,
which means the extinction of the original process 1 = (g = g, by theorem 3.2. We will
give examples below.
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4.1, TheB-cpwith8 = 1

‘We showed in section 2 that an attractive spin system, with its spin-flip rate given in the
form (2.6) or (2.7), has the dual process A4, in T (whose transition rule is given by (2.42)).
For the 8-Cp, it is given explicitly by

HM A= Y AHE, Cx — 1D Urde) Ure(fx + 10)4) — H(n, A)]

£EB L A(X) R0
+ (@ — DAH®@®, (e ({xD Ure({x — 1, x + 1}DA) — H(n, A)]
+[H(n, a:A) — H(n, A} (4.5)

if¢ =z 1. Since bé” =0if A e Tp then A, € Ty"r > 0. First we explain that the present
dual process will be reduced to the coalescing dual process when 1 < € £ 2. The following
identity should be noted, which is easily confirmed by the definition of H{», A).

Lemma 4.2,

Hm, (re({xh Ure({x = Lx + 1D)A4)
= H(n, (:({x — 1D Ure({x}NAY + H(n, e ((xh) Ure({x + 13D A)
— H(, (rz(fx — 1D U re({x]) U rz({x + 1) A). (4.6)

By using (4.6), (4.5} can be rewritten as

1 H(@p, )= Z {(@ — DALH(n, (rz({x ~ 1) Urs(xh)A) — H{n, A)]
xeZ4 A(x)20

+ (0 — DALH(n, (= ({xh Urz(fx + 1D)A) — H(n, A)]
+ @ = OA[H(m, (({x — INVUn({xD Urc({x + 1DA) ~ H(n, A1
+[H(n, ax A) — H(n, L} 4.7)

H,and only if, 1 <6 <2and A > 0, then (f —1)2 and (2 — &)\ are both non-negative
and can be interpreted as transition rates. In this case (4.7} shows that if 4 € T then
A, € T for all # 2 0. Therefore, as mentioned in remark 3.2, the present dual process can
be identified with the coalescing dual process in ¥ iff 1 £ 8 < 2.

Following the general theory of attractive spin systems (Liggett 1985), it can be proved
that a unique critical value A;(9) exists for each & > 1 such that

Ac(0) = supfd 2 0: g = dp}
=inf{A > 0: uy £ &} (4.8)

and that when t; = do, all the processes should become extinct with probability one and
the unique stationary state is a trivial absorbing state dp. Although the 8-Cp is a simple spin
system in one dimension, the exact value of A;(f) has not been obtained for any value of 8.
In our previous paper (Katori and Konno 1993), we proved the following lower and upper
bounds of A.(8) when 1 <8 < 2.

AL(@) < A(8) < 2u(B) 4.9)
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where

AL(@) =

— 1402+ 106 + 13 ] (4.10)

and Ay(#@) is the largest root of the cubic equation

2(9+1)[

M- -302-0r+2 -8 =0. (4.11)

Our proof was valid only for I € @ < 2 since the argument was based on the coalescing
duality theory.

Recently Jensen and Dickman (1994) studied the spin system which is equivalent to the
#-CP by the series-expansion method. Their method is not rigorous, but powerful, and gives
a precise estimation of the critical values as well as the critical exponents (Dickman 1989,
Jensen and Dickman 1993). They applied this series analysis to a wide range of & for the
6-cp: 1072 < 8 € 10°. Their estimated values exist between our lower and upper bounds
when 1 € 8 < 2. Moreover, they show that the inequalities (4.9) seem to hold not only for
1 < ¢ < 2 but also for all the values of & they examined (Jensen and Dickman 1994).

Now we prove the following generalized version of theorem 1.2 from our previous
paper (Katori and Konno 1993).

Theorem 4.3. Assume that

6> 1. ' (4.12)
Then Ay (6), defined by (4.10), gives the lower bound for the critical value

AL{(B) < Ac(8). (4.13)
Proof. By theorem 3.2 it is enough to prove that

o({{x}h=0 (4.14)

when A < AL(P). We will first prove (4.14) for L < I (i) and then we will prove it for
1 <A < ApL(8) (ii). Let

A = {{x}} A = {{x}, =+ 1))

Az = {{x}, {x + 1} {x +2}} As={{x} {x - Lx+1}}
As = {{x}, {x + 2} As = {{x} {x + 1}, {x + 2}, {x + 3}
Ay ={x} (x — 1, x + 1L {(x +2}1

If we put A = A, A, A; and As in (3.15), we obtain the following identities by lemma 3.3.

Ao (As) + (6 — Do () — (1 + 80 (A)) =0 (4.15)
(AN + Ao (A) — 1+ MNo{A) =0 (4.16)
Qo (A + o (As) + 2o {A5) — B3+ 200 (A3} =0 4.17)

o{ A1) + Ao (Ads) + (@ — Do (A7) — (1 +81)0(As) =0 (4.18)
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where we have used the translation invariance and symmetry of the mechanism. On the

other hand, if we let 4 = A, in (4.6) of lemma 4.2 and use the duality relation (3.9), we
have

a{As) = 20 (A2) — o (A3). (4.19)
Combining this with (4.15) and (4.16) gives the identities

{0+ 2 — Ol (Az) = (X + (3 — )} (Ar) (4.20)
and

MOA+ (2 — B)lo(As) = {832 + (3 — O)A + 1}or (A4y). @.21)

The inequalities which we need are obtained by lemma 4.1 as follows. If we let 4 = .4,
and B = A5 in (4.1), this gives

o (A7) S o{Ad) +0(As) —o(A) (4.22)
since A7 = A4, U A5 and 4; = A; N As. Similarly, we have

o(As) S 20 (A3) —o(4y) (4.23)
and

o(Asz) < 20(A2) —a(Ay). (4.24)

(i) First we apply (4.24) to (4.15). Then we obtain

(A - Dle(A)—o(A4)] 20 (4.25)
which implies

o (A1) 2 o (Az) (4.26)
when A < 1. On the other hand, by duality relation (3.9),

o(Ag) = 1 — Ep, (1 — n(x))(1 — n(x + D)]
21— Eyll~n(x)] =o{A1) (4.27)

since n{x + 1) € {0, 1}. Therefore,
(A1) = o(Aa) i<l (4.28)
Together with equation (4.20) this implies that
o(A) =c(d) =0 ifr<l. (4.29)
(ii} By using inequalities (4.22) an& {4.23), we obtain from (4.15)—(4.18),

(A2 + 20+ 2)0 (A1) + Ao (As) 2 (A + 1) (A4s) (4.30)
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Fipure 1. The full curve shows the lower bound A = Ar(8) of the exitical curve A = Ay (8)
for the 6-cp for @ > 1. It is proved by theorem 4.3 that all the process should become extinet
with probability one and that the unique stationary state is the trivial absorbing state &y if
A < AL(B), 8 = 1. We show, by circles, the values of A.(d) estimated by Jensen and Dickman
{1994). The broken curve denotes the upper bound i = Ay(8) which was proved only for
1 <8 <2 in our previous paper (Katorl and Konno 1993).

and

(A + 120 (As) 2 2007 — Do (A1) — (A + D — 3o (Aa) (4.31)
since we have assumed & = 1. Combining them gives

(A2 = A =3o(A:3) = (A2 — 20 — Do (A). 4.32)

Now, we assume that A 2 1, then 64 4 (2 — 8) = 2. We then obtain an inequality from
{(4.32) and (4.21)

{6+ DA% — (6 — Dr—3)o(A) > 0.

(4.33)

Since (@ + DA2 — (8 — DA —3 < 0 for 0 < A < AL() with (4.10), it follows that
o(A) =0 if1 <A <A@ (4.34)
O

In figure 1, we show the curve A = Ar(f) for & = 1 which gives the lower bound for
the critical curve A = A (#). We also plot the values of A;(#) estimated by Jensen and
Dickman (1994). As mentioned above, the validity of our lower bound has been extended
for all values of ¢ = 1 by using Gray’s generalized version of duality theory. However, we
have not succeeded in proving ‘the upper bound’ A.(#) € Ay() for 8 > 2, since it seems
difficult to extend the Holley-Liggett argument (1978) to the dual process on 1. So far,
we have no idea how to prove such bounds of A.(#) for the non-attractive cases 6 < 1.
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4.2. Multi-particle creation model and SrRP

The n-particle creation model in one dimension and the d-dimensional SRP are both attractive
spin systems for any n > 1 and d > 1 and the critical values can be defined as well as the
8-cP with 8 > 1. We will write them as AM™(n) for the multi-particle creation model and

ASRP(d) for the d-dimensional SRP, respectively. Since b5 = 0 in both systems, theorem 3.2
is applicable and we can prove the following lower bounds.

Theorem 4.4.

AMEM gy > 1 foranyn > 1 (4.35)

I

2> d2d — 1)

forany d = 1. (4.36)

These bourds can be proved by using lemmas 3.3 and 4.1 in the same way as the 6-CP.
More detail is given in appendix B. This result is a simple generalization of the bound (1.5)
in Noble (1992},

5. Comments

In the present paper, we reformulate Gray’s duality theory for attractive spin systems with
spin-flip rates given in the form (2.6} or (2.7). The argument can be extended to the system
where each particle can hop to a vacant site with some rate. Such a process is called the
exclusion process and its formal generator is given by

Qfm=3Y. 3 hG NI~ Fo)] ‘ 6.1

7(0)=1 n{¥)=0
_where
n(y) ifu=x
7 (u) = l 7(x) ifu=y (5.2)
n{u) otherwise.

Here A{x, y) denotes the hopping rate from x to y and we will assume that it is symmetric
h(x, y) = Ay, x). _ (5.3)

For example, when we consider the nearest-neighbour hopping with a constant rate D, we
let

] ifjx—yf=1
0 otherwise.

h(x,y}= [ (5.4)

For A € Yy we define A(x,y*) ={Aec A:xecAand y ¢ A} for x,y € Z%. Then we
have

QHm A= Y. Y RENH@ OGN -HO, DL (55
1 AX)ED yiAlx,y0)£8 '
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In this paper, we have defined the survival probability o(4) for A € 1 and have
shown that it is submodular. We have applied the method of Griffeath (1975) which gave
the criterion for the extinction g; = &y of the original spin system by using submodularity.
Although his method was originally used for coalescing processes, we have shown here that
it also works well in Gray’s version and have given lower bounds to the critical values for
the 6-CP, the multi-particle creation model and the SRP. The coalescing duality theory has
been useful for discussing not only the extinction (i; = §;) but also the survival of the
process (1] 7 dp). A typical example is the Holley—Liggett argument for contact processes

(Holley and Liggett 1978, Liggett 1991a,b, Katori and Konno 1993). The basic properties
of the processes defined in the state space Y should be studied further.
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Appendix A. Proof of proposition 2.1
By definition (2.31) of H{n, .4) we have the following lemma.
LemmaA.l. For A, BeTandnekX

H(n, AUB) = H(n, AYH(n, B). (A1)
In particular,

H(n, Ay = H(n, Ax))H(n, Ax)) (A2)
for A € T, x € Z%, where A(x) and A(x)® are defined by (2.24) and (2.25).

Here we introduce an operator ¢(B) with B € ¥ operating on the elements in T such
that '

c(B)A={AUB:A e AL (A.3)
It is noted that

c(B)ry () Ax) = ry(B).A(x) (A.4)
and

c(B)A(x} = rz{{x} U B)A(x) (AS)

if A(x) # 0, where r.(B) was defined by (2.27) and (2.28).
It is easy to confirm the following identities.
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Lemma A.2.
DletAeY,BeTandne X. If A% @ and B # @, then

#0r,c4)8) = [Tnr0.5) + (1-]] )

xEA xed

= H(3,B) + (1 -T1 n(x))(l ~ H(7. B)).

XEA

(2) Assume that A(x) 5 @, then
HOH @, Ax) — H(n, AGD] = 1 — H(y, A(x))
and
@n(x) — VIHO", Ax)) — H(p, A(x))] = 1 — H(y, r:(0).A(x))
where 77 € X and #* is defined as (2.2).
Combining lemmas A.1 and A.2 gives the following identities.

Lemma A.3. Assume that A(x) £ .
(= nGDIHM, A(x)) — H(n, AG)] = H(, ry(@).A(x)) — H(n, A(x))

(1- n(x)){ 1-J] (1 -T1 n(y))}{H(n",A(x)) — H(n, A
B

Ay yEB,

= H(n, (rx({x}) v ( U rx(B,)))A(x)) — H(n, A(x))

Be~Ay

nex) ] (1~ I1 n(y))[H(nﬁA(x))—H(mA(x))]
B,~A

Y&B,

- H(m( U rx({x}UBx))Am) — H{p, Ax)

BrAy

A~ 10D [ [ nIHE®, A®)) = Hp. AH]

yeB,

= H(n, (r=({xP U rx(B))A(x)) — H(y, A(x)).

3209

(A.6)

(A7)

(A.B)

(A9

(A.10)

(A.11)

(A.12)

Proof. Here we give the proof for (A.10). The other identities can be proved in the same

way. By (A.1) and (A.6), for B 7T,

He, (c({xDU( U c(ea))s):ﬂ(n,cc{x})s) < T B e(BB)

By~d, By~ Ay

=H(@mB)+ 1 —ne) [] (1 -1 n(y))(l — H(n, B)).

By~ Ay YEB,

(A.13)
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Let B = r,(§).A(x) in {A.13) and use (A.4), (A.7) and (A.8), We then have

H (n, (rx({x}) U ( U rx(Bx)))A(x)) =1-@n(x) — DIHG", Alx) — H(n, Ax))]
B,

e ~Ax

— - [] (1- I n(y))[H(nx,A(x))—H(n,A(x))]

By~dy yEB,

=1—n()[H (5", Alx)) — H(@n, A@x))]

+(1—n(x)){1— I (1—1‘[n(y))}[H(n*,A(x»—ch,A(x))J

J: T yeB,
= H(p, AG) + (1 —n(x)){l - TI (1 - 11 n(y))}
Ba~dy J"GEx
x [H(7*, A(x)) — Hr, AG)]. (A14)

Proposition 2.1 follows lemmas A.I, A.2 and A.3.

Appendix B. Proof of theorem 4.4

For the one-dimensional n-particle creation model, the survival probabilities of the dual
process should satisfy

3 {lo(@d) — (D + Mo (AU (x +1,x42,..., x +n})A) —a(A)]
xeZ: A(x)40

+AMo(AUr({x—n,..., x—2,x =14 -c(A)}=0 B.1)
for A € Tp by lemma 3.3. Let

Ar={x+1,x+2,...,x+n}

Az ={x+2,x+3,...,x+rn+1}

AP =+ 1. x+k—Lx+k+1,... . x+k+n}
for 2 < k < n. Then by letting A = {{x}}, {{x}, A1} and {A;} in (B.1), we have
2o {{x}, A1) — @A+ Do{{x}h =0 (B.2)
o({A1D) + no({{x})) + do ({42, (x}, A1D) + Ao ({{x}, A1, 43})

n f
+2 3 odix), AL APD ~ (0 + DO+ Doll{xh, 4D =0 (B.3)
k=2
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and

7
Ao ({An, 45D+ 2 ) o (41, AP —Z2a+ Do (A1) =0. (BA)
k=2
By the submodularity of lemma 4.1 and the translation invariance and symmetry of the
mechanism, we have

o({Az, {x} AP < 20 ({{x}, A1D) — o ({{x}) (B.5)
U({{x}, AI! A3}) "-<-. cr({{x}, AI}) + O‘({Ais A3}) - o‘({Al}) (B‘G)
ol{{x}, A, APD <oz}, A1) + o4, AP) —o(ALD. (B.7)

Applying these inequalities to (B.3) and using (B.4), we obtain

{(A =+ Dle({{x}, 41D+ %(n +Do{{Aa}) — (A —nmo{x}h >0 (B.8)
which together with (B.2) implies

(n+2D0({A) —{A+ @+ Dio({x}h =0. (B.9)
On the other hand, by (3.10} of corollary 3.1

c({A) = E, [H nix + i)]
=]

€ E,n(x)] = o ({{x1D) (B.10)
since n{x + i) {0, 1} and the system is translation invariant. Therefore
n+ 1) —-Do({{xih 20 (B.11)

which means that
ao({{x}hHh =0 ifAa<1.

By theorem 3.2, this implies AMM(n) > 1.
The proof for ASKE (@) = 1/d(2d — 1) is given in the same way. O
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