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Reformulation of Gray’s duality for attractive spin systems 
and its applications 

Makoto Katori 
Department of Physics, Faculty of Science and Engineering, Chuo University, Kasoga, 
Bunkyo-ku. Tokyo 112, Japan 

Received 12 October 1993 

Abstract Duality relations, which associate two Markov pmesses in different state spaces, 
have been useful took in the shldy of the long-term behaviour of the stochastic processes of 
spin systems. In 1986, Gray introduced a new duality theory which is applicable to geneml 
spin systems with amctive m s i t i o n  rates. The theory was developed by making full use of 
graphical representations. In the present paper, Gray’s duality is reformulated by studying the 
action of the formal generators on a newly chosen duality function and the dual processes defined 
in the state space Y = [d : d is a finite subset of Y} are discussed, where Y is a collection 
of finite subsets of Zd. As applications of the submodularity of the survival probability a(d) 
of the dual procwes, rigorous lower bounds of the critical values are derived for the @-contact 
process, the multi-pticle creation model and the sexual reproduction process. 

1. Introduction 

There are two types of duality relations, both of which have been useful tools in the 
study of spin systems. One of them’is the high-temperaturdow-temperalure duality, based 
on the duality transformations of lattices, which gives an exact evaluation of the critical 
temperatures for many equilibrium lattice models in statistical mechanics (see., for example, 
Baxter 1982). The other is the study of the stochastic processes of spin systems which 
associates two Markov processes in different state spaces. In the present paper, we consider 
the latter duality. 

A general definition of this duality is the following (see section 11.3 of Liggett (1985)). 
Suppose qt and I; are Markov processes with state spaces X and Y, respectively, and let 
H(q. <) be a bounded measurable function on X x Y. The processes q, and cc are said to 
he dual to one another with respect to H if 

for all q E X and 5 E Y. Here the LHS represents the expectation of H(qr, .)~ for the 
process qt E X starting from the configuration q and the RHS represents that of H(.,  z;) for 
Tr starting from 5 .  

The interacting particle systems in which we are interested are usually Markov processes 
on an uncountable space X = IO, 11’ with, for example, S = Zd: the d-dimensional hyper- 
cubic lattice. A useful duality theory relates them to Markov chains in which the state space 
Y is a countable set. Sometimes the dual process is more tractable than the original process. 
Depending on the choice of duality function H, there are several types of duality theory. 
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When we analyse a spin system, we use one of these theories if we can find an appropriate 
simple duality function H. 

In our previous paper (Katori and Konno 1993), we used a coalescing duality to study 
the family of one-dimensional contact processes first investigated by Durrett and Griffeath 
(1983), which we simply called the &contact process (or 8-CP for short). The 0-cp, q,, is a 
one-dimensional spin system in which the state space is X = [O, I]'. The system evolves 
by the following single-spin-flip dynamics. 

(i) If q r - ( x )  = 1, then qf(x)  = 0 at a rate 1. 
(ii) If qt-(x) = 0, then q,(x)  = ~ l  at the rate f(N&-)) which depends on the number 

of the nearest-neighbour particles N,(t-) = qr-(x - 1) + qr-(x + 1) as 

Here A and 8 are non-negative parameters. This process can be viewed as a simple model 
of the spread of infection of a disease. The parameter A is the infection rate when only one 
of the neighbours is infected (NI =-l). The parameter 8 is the ratio of the infection rate in 
the case N, = 2 (both neighbours are infected) to that in the case Nz = 1. The coalescing 
dual process is defined on the state space 

Y = {A : A is a finite subset of Z} (1.3) 

and corresponds to the choice of H as 

(1.4) 

It is easy to show that the 6'-cp has a coalescing dual process if, and only if, 1 < 8 < 2. 
We extended the method of Griffeath (1975) and the Holley-Liggett argument (1978) to 
derive the rigorous lower and upper bounds for the critical line 1 = A,(@ which divides 
the extirtctionphare and the survivalphare. Since all of these arguments were based on a 
coalescing duality, our bounds were only valid for the case 1 6 8 < 2 (Katori and Konno 
1993). 

As this example shows, the coalescing duality is a powerful tool in the study of the 
long-term behaviour of the spinsystems; however, it can only be applied to some special 
cases. The problem is whether we can define another duality which will cover a larger class 
of spin systems. In 1986, Gray introduced a new theory for dual processes which can be 
applied to more general spin systems. His theory is applicable to all attractive spin systems 
with any finite-range interactions in any dimensions (Gray 1986). Following this, we can 
define Gray's dual process for the 8-cP for all 0 

Gray's duality theory was developed by making full use of the graphical constructions 
(Gray 1986). This procedure enables us to define both the original spin system and the 
dual process on the same spatio-temporal hyper-plane, Zd x [O, t ) .  On the other hand, there 
is another standard method for introducing a spin system by defining the corresponding 
Markov semigroup S(t )  from the formal generator Q. The formal generator is given if we 
specify the flip rate c(x ,  q) as a function of the spin configuration (see the next section and 
Liggeu (1985)). Therefore, if we follow the latter procedure, we can discuss Gray's duality 
formally by only treating the formal generators. That is, we can reformulate Gray's duality 

1 (the 8-cp is attractive iff 8 > 1). 
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theory by choosing a new duality function H and by observing the action of Q on it. The 
state space of Gray's dual process is given by 

T = { A  : A is a finite subset of Y}. (1.5) 

The new choice of H is 

Although the state space T is much larger than the state space Y of the coalescing dual 
process, it is still countable. 

In the present paper, we will explain how we can reformulate Gray's duality theory 
by using the formal generator C2 and (1.6) for general attractive spin systems. Almost all 
the results concerning this general duality were given in the original paper by Gray (1986). 
Our representation, however, is more similar to that for coalescing dual processes on Y and 
enables us to extend the methods originally used by us to Gray's dual processes. In fact, we 
can develop Griffeath's method (1975) to give the conditions for the extinction of processes 
in our framework. We define the survival probabilities o(d) for Gray's dual processes and 
use their generalized version of submodularity. As an application, we will show that our 
lower bounds for~Ac(8) of 8-CP derived in the previous paper~(Katori and Konno 1993) is 
valid not only for 1 4 8 < 2 but also for 8 > 2. We will also give some lower bounds 
for the critical values of one-dimensional multi-particle creation models (recently studied 
by Dickman and Tomi (1991) and Durrett and Neuhauser (1994)), and the d-dimensional 
sexual reproduction processes (Noble 1992); neither of these have dual processes in the 
previous version. 

The paper is organized as follows. In section 2, we reformulate Gray's duality by using 
some basic properties of H given by (1.6) when the formal generator C2 is applied. In 
section 3, we briefly review the duality relations and some theorems originally given by 
Gray (1986) in ow framework. Section 4 is devoted to showing some applications of the 
present duality theory, which is similar to Griffeath's method (1975). Some comments are 
given in section 5. 

2. General attractive spin systems and their dual processes 

2.1. F o n d  generators 

We consider a class of continuous-time Markov processes, qr,  on the d-dimensional hyper- 
cubic lattice Zd.  Each site x E Zd is occupied by either a particle ( q t ( x )  = 1) or a vacancy 
(qt(x) = 0). That is, the state space is X = (0, l)zd. Let C(X) be a set of continuous 
functions on X. We assume that the process follows single-spin-flip dynamics. Such an 
interacting particle system in which each coordinate has two possible values and only one 
coordinate changes in each transition is often called a spin system. A spin system is defined 
in the standard method as follows (Liggett 1985). The formal generator S2 on C(X) for a 
spin system is given as 
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for j E C ( X ) ,  where 
i f u = x  

(2.2) i f u # x .  
If the flip rate c(x, q) is appropriately chosen, the Markov semigroup S(t )  is defined by Q 
as 

rl”(u) = 

(2.3) 

for j E C(X) and t > 0, where I is the identity operator. There is a unique Markov 
process v, corresponding to SO), such that 

and 
Wf(v) = E“[Jr(rlr)l (2.4) 

(2.5) 
d 

- - E W 7 l t ) 1  = EU[Qf2f(tlt)l 
dt 

for all f E C(X), q E X and t > 0. 
In this paper we assume that the flip rate is attractive: whenever q < {, c(x. q )  < c(x, 5 )  

if q ( x )  = <(x)  = 0 and c(x. q)  > c(x, {) if q ( x )  = Z(x) = 1, and that it has a 
finite. range: there is a finite set of sites R, c Zd such that c(x, q )  depends only on 

, X, = ( ~ ( y )  : y E R, U {XI} for each x. Such a flip rate is specified if we give the 
dependence of c(x. q )  on X, as below. We call a non-empty subset in R, a region and 
let R, be a collection of these regions. We introduce an equivalence-relation among the 
regions and this can be written as A, - Ex for A,, E, E 73,. We let 73, be the collection 
of all equivalence classes determined by this relation: I& = ‘72, f -. We assume that if 
q(x) = 0 and if all sites of at least one of the regions, which is equivalent to A, E E,, are 
occupied by particles, then a rate by: > 0 is added to c(x ,  7). If q(n) = 1 and if at least 
one site is vacated in all equivalent regions to Bx E ex, then a rate dg) > 0 is added to 
c(x, 7). We also assume that spin flip occurs spontaneously at a rate bi), if ~ ( x )  = 0, and 
at a rate d i )  if ~ ( x )  = 1. The spin-flip rate is thus assumed to be written in the form 

where bi), (bi:}, df), and {dt:} are non-negative parameters. By choosing a set of these 
parameters appropriately, any type of attractive finite-ranged flip rates can be represented 
in this form. 

It should be noted that when there are some simple relations among the parameters 
(biy) and Id:’}, respectively, the flip rate q ( x ,  v )  given above is reduced to the following 
simpler form: 

with some non-negative parameters bf), {bz}, df) and {di?}. 
We will give some examples below. 
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Example 1. The 0-Cp  with 0 2 1. The 0-CP is the onedimensional spin system with its 
spin-flip rate given by 

C ( X ,  17) = h(1- q(x))tq(x - 1) + ~ ( x  + 1) - (2 - 0 M x  - 1 M  + U1 t s(x). (2.8) 

It is easy to confirm that this can be expressed in the form (2.6) if we choose the range and 
the parameters as follows. Let 

R, = { X  - l , ~  + I] (2.9) 

and 

7% = Ilx + 11, { x  - 1,x + 11) (2.10) 

with [ x  - 11 - [ x  + 11, and let 

if A, = 0  
if Ax = { x  + 1) 

(0-l)A i f A , = { x - l , x + 1 ]  

and 

1 i f A , = 0  
otherwise. 

d!<) = [ 

(2.11) 

(2.12) 

Example 2. The one-dimensional n-particle creation model. Dickman and Tom6 (1991) 
studied, by using computer simulations, the one-dimensional particle systems with spin-flip 
rates given by the following when n = 2 and 3: 

This process was introduced to model autocatalytic chemical reactions. When n = 1 it is 
merely the basic contact process (i.e. 0 = 2 case of example 1). This flip rate is written in 
the form c ~ ( x ,  9) .  given by (2.7), when we put 

A 
(2.14) 

if A, = ( x  + I , x  + 2 , .  . . , x  +n] 
b e = ( ,  otherwise 

i f A , = 0  
otherwise 

(2.15) 

and assume that { x  -n ,  .... x -2 ,x  - 1) - [ x  + 1,x + 2 , .  . . , x  +n) .  

Remark 2.1. Dickman and Tom6 (1991) simulated a more general case where creation and 
annihilation of particles occurred with the rates (2.13) and each particle could hop to one of 
its neighbour sites, with a rate D, if it was vacant. The asymptotic behaviour of the process 
when this diffusion rate D 4 00 was investigated by Durrett and Neuhauser (1994). Here 
we consider the case D = 0. We will comment in section 5 on the dirwiwe case. 
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Example 3. The d-dimensional sexual reproduction process. When n = 2, the above 
process is sometimes called the (one-dimensional) sexual reproduction process (SRP). It was 
studied by Noble (1992) when the diffusion rate D --f 00. The d-dimensional version of 
the SRP is defined by the following flip rate on the lattice Zd in the case D = 0, 

c(x,  q )  = - q ( x ) )  V(Y)V(Z) + ~ ( x ) .  (2.16) 
y:ly-xl=l z:lz-yl=l,z#x 

It is also written in the form c&, q) ,  given by (2.7). when we put 

h if A, = {x + e , ,  x + 2el} bc2) - 
A' - I O  otherwise 

if A, = 0 
otherwise d ~ ) = ( o  1 

(2.17) 

(2.18) 

and assume that {y, z }  - { x  + e l , x  + 2el} for all y and z such that Iy - x i  = 1 and 
Iz - yI = 1, z # x ,  where el = (1.0, . . . ,a). 

Example 4. The stochastic Ising model with ferromagnetic interaction. The spin-flip rate 
for the one-dimensional stochastic king model with nearest-neighbour interactions is usually 
given by (Glauber 1963, Suzuki and Kubo 1968) 

C ( X ,  q )  = i t 1  - S ( X )  tanh{h + K(s (x  - 1) + S ( X  + I))}] (2.19) 

where s ( x )  = Zq(x) - 1 E {-I, I}. Here h = flH and K = f lJ  where H is the external 
field, J the exchange interaction and f l  = l/knT the inverse temperature It is easy to 
confirm that it can be written in the form q ( x ,  q) ,  given by (2.6), when R, and 'i?,x are 
given in the same way as example 1, with { x  - l} - {x  + 1) and 

and 

$(I  - tanh(2K -h))  i f A , = 0  
i(tanh(2K - h) + tanhh) 
f(tanh(2K+h) -tanhh) 
0 otherwise 

(2.20) if A, = { x  + 1) 
if A, = { x  - I , x  + 1) 

i (1  - tanh(2K + h ) )  

f(tanh(2K - h)  + tanhh) 
i(tanh(2K + h)  - tanhh) 
0 otherwise. 

i f A , = 0  
if Ax = {x + 1) 
if Ax = { x  - I ,  n + 1) 

(2.21) 

When the interaction is ferromagnetic ( J  > 0). bt: > 0 and d!: > 0: in this example, 
bg) # 0. The generalization for the case with long-range interactions, or for higher 
dimensions, is straightforward. 
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We will treat a collection T of finite subsets of Y. The elements of T will be denoted by 
A, U , .  . . E T. They are a collection of sets of sites, for example, 

(2.22) 

where xi E Zd.  An empty set in T is denoted by B and it should be distinguished from [0) 
which contains one element, an empty set of Y .  

We will write the union of A and U which contains all the elements of A and U as 
A U U. For example, 

A U U = ~ ~ , ~ X I ~ , I ~ ~ ~ , ~ ~ ~ . ~ ~ ~ . ~ ~ ~ , X ~ , X ~ ~ ~  (2.23) 

for A and U given by (2.22). In the same way, when we write AnU or d\U  for A, I3 E T, 
they should be interpreted as the intersection and the difference in the sense of the sets in 
T (see lemma 4.1). 

For a fixed site x E Zd,  each A E T is partitioned as 

A = A(x) U d(nF (2.24) 

with 

A(x) = ( A  E A : x  E A} A(x)" = {A E A : x  A}. (2.25) 

Then we introduce the following operators, a, and rz(B),  which operate on the elements 
of T: 

a,A = d(x)". (2.26) 

(2.27) 

(2.28) 

If A(x) = 0, we assume r,(B)A = A. That is, a, annihilates all sets in A which contain a 
site x and r,(B) replaces each set A in A which contains x ,  by the set which is obtained 
from A by removing x and adding B. We will use the following abbreviations: 

U rx(Bz))A = (rx(BdA) U (rzIBz)A) (2.29) 

and 

(2.30) 

for A E T, Bi E Y .  
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2.3. Dual process 

In order to introduce Gray’s duality, we choose the following duality function H ( q ,  A) on 
x x I-: 

I 1  i f A = 0  

for q E X. 

c1 ( x ,  q )  we define 
For convenience, we introduce here some notation for combinations of operators. For 

and 

(2.32) 

(2.33) 

for each A, E fix. For c2(x, q) we define 

R z W d  = rx(Inl) U r A 4 )  and M A , )  = r A x )  U A,) (2.34) 

for each A, E ‘R,. 
We then obtain the following fundamental identities. 

Proposition 2.1. Assume that the formal generators 521 and a2 are given by (2.1) and (2.2) 
with the flip rates cl(x. q) in the form (2.6) and cz(x, q) in the form (2.7), respectively. 
Then for any q E X , A  E T, 

ai H ( v ,  -4 = ~ 3 W 7 9 r A 0 ) A )  - H(o .  4 1  
X€Zd:A(X)+0 

+ b i ? [ H ( ~ .  Rl(Az)A) - H(q.A)I +d:)[H(%azA) - H ( v ,  AI1 
AXE%, 

(2.35) 

(2.36) 
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The proof is given in appendix A. 
We write the following collections o f  the operators by Qj (i = 1,2) as 

and 

Q d x )  = (r.d0), GI U (&(A,) : A, E 'RJ U {Sz(A,) : A, E RJ. (2.38) 

We let pj(rz(0)) = b:), pi(ax) = d$) for i = 1,2  

pi(Ri(Ad) =b!: pi(Si(A,)) =d,f: (2.39) 

for A, E ex, and 

pz(Rz(B,)) = bf: pz(Sz(Bx)) = d:) (2.40) 

for each Bx E 'RI such that Bx - Ax with A ,  E RX. Then we define for A, B F T 

qi(A,B)= ' C Pi(qx) (2.41) 
x:d(x)#B q,€Qi(x):q,d=B 

for each case i = 1,2. 
Then (2.35) and (2.36) can be written in the form 

StiH(q, A) = Cqi(A B ) [ ~ ( t l ,  -  qv 41 (2.42) 
B 

for i = 1,2. Since qi(A, B) are non-negative, they can be interpreted as the transition rates 
for a continuous-time Markov chain At on T. Since we have assumed that the range of 
interactions Rx is finite for any x E Zd, this Markov chain is non-explosive. 

We thus obtain the following main theorem. 

Theorem 2.2. Let qr be an attractive spin system with flip rates c(x ,  q )  given in the form 
(2.6) or (2.7) and let A, be a Markov chain on T with transition rates q(A, B) given by 
(2.41). Then for every q E X, A E T and i > 0 

E'[H(qt ,  A)]= Ed[H(q, &)I. (2.43) 

It is easy to observe that the dual process A, of q, defined above with respect to (2.31) 
is equivalent to that defined by Gray (1986) using graphical representations. 

Remark 2.2. It should be remarked here that if A, 3 0 at some time s 2 0, then 3 0 
for all t > s since there is no such operator in Q i ( x )  that removes the element 0 from A,. 
On the other hand, if b:) = 0 and 0 6 A, then 0 $ A, for all t > 0. The condition b:) = 0 
is the prohibition of the spontaneous creation of particles in the original spin systems. 
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3. Duality relations 

From now on we will assume that 

bi) 0. (3.1) 

Let 

Yo = [ A E  T: 0 4 A}. (3.2) 

As mentioned in remark 2.2, if A E TO then Ar E YO for all t > 0 under the condition 
(3.1). For convenience, we assume that if A = 0 then nAEd. = 1. Then, by theorem 2.2 
and the choice of (2.31) for H ,  we obtain the following identity for q E X, A E TO and 
t > o  

It is easy to see that if r l =  1 then 

i f B = 0  
AEE X E A  0 otherwise. 

Therefore, if we put q 1 in (3.3) we obtain 

or equivalently 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Then we take the limit I + 00 in (3.6). Since we assume that the process is attractive there 
exists an upper invariant measure (Liggett 1985) 

FI lim &S(t )  (3.7) 

where 81 is the point-mass distribution on q 1 and S(t)  is the Markov semigroup defined 
from the generator C2 by (2.3). We can thus define the survival probability for the dual 
process A, by 

,+m 

u(A) = lim PA(Ar # 0) (3.8) r - m  

for A E YO. The following is a corollary of theorem 2.2. 
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Corollary 3.1. For A E TO 

= 1 - E,, [ (1 - XEA n 41. 
AEA 

(3.9) 

In particular, for A E Y, A # 0 

and for n E E' 

~ ( ( I x l l )  Ewr[~(x)I =PI{V : q ( x )  = 1). (3.11) 

When bi) = 0, the lower invariant measure, PO = lim,+,SoS(t) (SO is a point-mass 
distribution on q E 0), is So. In this case it is proved that the unique stationary state is a 
trivial absorbing state SO if, and only if, PI = SO (Liggett 1985). If pi  = SO, the RHS of 
(3.11) is zero. However, if the RHS of (3.1 1) is positive, then p l  # SO. Therefore we obtain 
the next theorem. 

Theorem 3.2. 

u({{xlD = 0 w PI =So 

4Q11) > 0 * P1 # 80. 

Remark 3.1. This theorem was given as statements (30) and (31) in Gray (1986). 

(3.12) 

(3.13) 

Next we will provide a lemma which gives the identities between the survival 
probabilities. Let u(t,  A) = PA(A, # 0) for A E To. By (2.S), (2.42) and using the 
duality relation (3.6) twice 

d d 
- ~ ( t ,  A) = -{I - E ' [ f f ( ~ t ,  A)11 dt dt 

= - E ' [ Q f f ( ~ z ,  4 1  
= rqi(d, @[I1 - E'[ff(~r, B)lI - U  - E'[ff(~t, A)1)1 

= xq i (A ,  B)[u( t ,  B) - u(t ,  -41. 
B 

(3.14) 

By the definition of (3.8), we can conclude that the survival probability u(d) satisfied the 
following identity. 

B 

(3.15) 

Remark32 Before ending thk section, we remark that the present duality of Gray includes 
the coalescing duality as a special case. Consider the case when A is a collection of 
singletons in Y 

A= I{xI),{xz), . .. ,{xn)) (3.16) 
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with xi E Zd, 1 < i < n. For such A, by definition (2.31), 

(3.17) 

when we let A = { X I ,  XZ ,  . . . , x.). Let y be a collection of ds which are given in the form 
(3.16) with some n 2 1, i.e. the collections of singletons in Y .  Then each element A in ? 
can be identified with set A = { X I ,  x2 , .  . . , x n ]  E Y and 

H(v .  A) Hc(q, A) (3.18) 

where H, is the coalescing duality function given in (1.4). Therefore, if the time evolution 
of A, is given such that AI E ? for dl f > 0, then it is identified with the coalescing dual 
process AI defined in Y .  

4. Submodularity of u(A) and its applications 

It is easy to prove that the survival probability u(A) satisfies the following inequality which 
is called submodularity. 

Lemma 4.1. The survival probability defined by (3.8) for a dual process A, E TO of the 
spin system with be = 0 is submodular in the sense that 

.(A U B) + d d  n B) < u(d) + u(n) (4.1) 

whenever A, B E TO. 

Proof: Let h(v, A) = 1 - nXGA q ( x )  for q E X, A E Y. Since h(7. A) E {0, 11 for any 
~ E X , A E Y ,  

{ 1 - fl h(v ,A)  x n h(v3 E )  x 1 - n h(v,C)} > O  (4.2) 
AsA\B 1 BEAM I CsB\A 

for A, I3 E To, This is rewritten in the form 

On the other hand, for A E TO 

by the duality relation (3.9). Then (4.1) follows (4.3). 0 

Combining the identities given by lemma 3.3 and the inequalities between the u(d)s 
given by lemma 4.1, we can obtain the criteria for ~ ( { { x ) ] )  = 0 in some dual processes, 
which means the extinction of the original process = /.LO = 80, by theorem 3.2. We will 
give examples below. 
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4.1. The 0-CP with 0 2 1 

We showed in section 2 that an attractive spin system. with its spin-flip rate given in the 
form (2.6) or (2.7), has the dual process As in T (whose transition rule is given hy (2.42)). 
For the B-CP, it is given explicitly by 

QiH(rl, 4 = {h[H(r17 ( r d b  - 11) u r x ( { x l ) u r x ( { x  + 11))A) - H ( v ,  4 1  
Z€Z%t(X)+0 

+ (8 - WIH(tl ,  ( r j r ( (x l )  U r A X  - 1, x + 1l))A) - H ( q ,  A)] 

+ [ H ( t l ,  a d )  - Wrl, AH1 (4.5) 

if 8 2 I .  Since b f )  = 0 if A E 'Yo then E ToVf > 0. First we explain that the present 
dual process will be reduced to the coalescing dual process when 1 < 8 < 2. The following 
identity should be noted, which is easily confirmed by the definition of H ( q ,  A). 

Lemma 4.2. 

H ( v ,  (rx(Ixl)  U r d I x -  L x +  1DM) 
= H ( n ,  ( r x ( b  - 11) U r,(Ix)))A) + H ( v ,  ( rx(Ix) )  U r A x  + 1D)A) 

- H ( v .  ( r A x  - 11) U rAIx1) U rAIx + 1l))A). (4.6) 

By using (4.6), (4.5) can be rewritten as 

% H ( v 3  4 = ((8 - l)h[H(rl. ( r x ( ( x  - 11) urx({xH)A) - Wrl,A)l 

( r A x 1 )  U r X ( b  + 1l))A) - H(n ,  AN 

xeZd:d(x)#O 

+ (8 - 
-t (2 - e),W(tl, 

+ [H(rl.a,A) - Wrl, AH]. 
- 11) r z ( b 1 )  U d I x  + 11))A) - W v ,  AN 

(4.7) 

If, and only if, 1 < 0 < 2 and h > 0, then (0 - 1)h and (2 - 8)h are both non-negative 
and can he interpreted as &"&on rates. In this case (4.7) shows that if R E f then 
A, E f for all E > 0. Therefore, as mentioned in remark 3.2, the present dual process can 
be identified with the coalescing dual process in Y iff 1 g 8 Q 2. 

Following the general theory of attractive spin systems Wiggett 1985), it can be proved 
that a unique critical value &(e) exists for each 8 > 1 such that 

(4.8) 

and that when p.1 = 60, all the processes should become extinct with probability one and 
the unique stationary state is a trivial absorbing state 80. Although the O-CP is a simple spin 
system in one dimension, the exact value of A,@) has not been obtained for any value of 8. 
In our previous paper (Katori and Konno 1993), we proved the following lower and upper 
bounds of A#) when 1 < 0 < 2. 

hL(8) < &(e) < Ado) (4.9) 
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where 

(4.10) 

and A,j(e) is the largest root of the cubic equation 

oh3 - (38 - 2 ) ~ ~  - 3(2 - e)A + (2 -e) = 0. (4.11) 

Our proof was valid only for I < B < 2 since the argument was based on the coalescing 
duality theory. 

Recently Jensen and Dickman (1994) studied the spin system which is equivalent to the 
0-CP by the series-expansion method. Their method is not rigorous, but powerful, and gives 
a precise estimation of the critical values as well as the critical exponents (Dickman 1989, 
Jensen and Dickman 1993). They applied this series analysis to a wide range of 0 for the 
0-CP: 4 0 4 lb. Their estimated values exist between our lower and upper bounds 
when 1 < .9 < 2. Moreover, they show that the inequalities (4.9) seem to hold not only for 
1 < 8 < 2 but also for all the values of 0  they examined (Jensen and Dickman 1994). 

Now we prove the following generalized version of theorem 1.2 from our previous 
paper (Katori and Konno 1993). 

Theorem 4.3. Assume that 

0 > 1. (4.12) 

Then AL(e), defined by (4.10), gives the lower bound for the critical value 

AL@) < &(e). (4.13) 

Proof. By theorem 3.2 it is enough to prove that 

d l b l l )  = 0 (4.14) 

when A < AL(e). We will first prove (4.14) for A < 1 (i) and then we will prove it for 
1 < A < A,((?) (ii). Let 

Ai = {{XI) 
A3 = {{XI, IX + 11, IX +211 

As = I I X I ,  Ix + 211 
A7 = {{x), ( X  - l , ~  + 11, t X  + 21). 

Az = Ib l ,  tx + 111 
$14 = {{XI, IX - 1.x + 111 

& = I I . 4  IX + 11, IX + 21, IX + 311 

If we put A = Ai, dz, A3 and ds in (3.15), we obtain the following identities by lemma 3.3. 

hu(A3)+(e-1)hu($14)-(1+0h)u(A~)=O (4.15) 

o(Ai)+Ao(A3)-(1+A)U(Az)=O (4.16) 

2o(Az) +U(& +~XU(&) - (3 + 21)U(d3) = 0 (4.17) 

o(d1) +nu(&) + (8 - l)hu(A.r) - (1 + @A)U(A~) = 0 (4.18) 
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where we have used the translation invariance and symmetry of the mechanism. On the 
other hand, if we let A = A1 in (4.6) of lemma 4.2 and use the duality relation (3.9), we 
have 

U(&) = Zu(A2) -.(Ad. (4.19) 

Combining this with (4.15) and (4.16) gives the identities 

{en + (2 - e))u(az) = (eh + (3 - s))o(al) (4.20) 

and 

h{0I + (2 - 0)]u(&) = {@I2 + (3 - 0 ) 1  + 1)u(A1). (4.21) 

The inequalities which we need are obtained by lemma 4.1 as follows. If we let A = 
and U = A, in (4.1), this gives 

dA7) $ u ( & ) f o ( A d - ~ ( A d  (4.22) 

since A7 = Aq U A5 and AI = Aq n As. Similarly, we have 

U(&) <ZO(Ad -O(Az) (4.23) 

and 

0(.43) 4 20(Az) -u(Ai). (4.24) 

(i) First we apply (4.24) to (4.16). Then we obtain 

(1 - i)C(Ai) - 0(Az)1 > 0 (4.25) 

which implies 

O(Ad 2 44 (4.26) 

when h i 1. On the other hand, by duality relation (3.9). 

= 1 - 511(1 - v ( x ) ) ( ~  - q(x + 1))l 
2 1 - Ep,U - &)I =+Id (4.27) 

since q(x + 1) E {O, 1). Therefore, 

o(A1) =U(&) if I e 1. (4.28) 

Together with equation (4.20) this implies that 

U(&) = U(&) = 0 if h < 1. (4.29) 

(ii) By using inequalities (4.22) and (4.23). we obtain from (4.1.5)-(4.18), 

( IZ+2A+2)~(Ai)  +h~(A3) > ( I +  1)24A5) (4.30) 
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A 
Figure 1. The full curve shows the lower bound A = k ( 0 )  of the critical curye A = &(e) 
for the 0-cP for 0 2 1. It is proved by thwrem 4.3 that all the process should become extinct 
with probability one and that the unique stationary state is the trivial absorbing state 80 if 
A < IIL(B). O 2 I .  We show, by circles, the values of A& estimated by Jensen and Dickman 
(1994). The broken curve denotes the upper bound A = M O )  which was proved only for 
I < B < 2 in OUT previous paper (Kiuori and KOMO 1993). 

and 

(A + l)’U(ds) > 2(A2 - l)u(dl) - (A + 1)(A - 3)~(sl3) (4.31) 

since we have assumed 8 > 1. Combining them gives 

(Az - A  - 3)u(d3) > (Az - 2A - 4)~(s l , ) .  (4.32) 

Now, we assume that A > 1, then @A + (2 - 0 )  > 2. We then obtain an inequality from 
(4.32) and (4.21) 

((e + i)h2 - (e - I)A - 3)U(A1) > 0. (4.33) 

Since (e + I)hZ - (e - 1)A - 3 c 0 for 0 < A e h L ( B )  with (4.10). it follows that 

u(d1) = 0 if 1 < A c A L ( ~ ) .  (4.34) 

L3 

In figure 1, we show the curve A = A&‘) for 0 > 1 which gives the lower bound for 
the critical curve A = A,(@). We also plot the values of IC(@) estimated by Jensen and 
Dickman (1994). As mentioned above, the validity of our lower bound has been extended 
for all values of 8 > 1 by using Gray’s generalized version of duality theory. However, we 
have not succeeded in proving ‘the upper bound‘ A,(@ < A,@) for e z 2, since it seems 
difficult to extend the Holley-Liggett argument (1978) to the dual process on T. So far, 
we have no idea how to prove such bounds of AC(@ for the non-attractive cases e e 1. 
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4.2. Multi-particle creation model and SRP 

The n-particle creation model in one dimension and the d-dimensional SRP are both attractive 
spin systems for any n 1 and d 2 1 and the critical values, can be defined as well as the 
6’-cp with 6’ 2 1. We will write them as AFcM(n) for the multi-paaicle creation model and 
A:”(d) for the d-dimensional SRP, respectively. Since bf = 0 in both systems, theorem 3.2 
is applicable and we can prove the following lower bounds. 

Theorem 4.4. 

AFcM(n) 2 1 for any n 2 1 (4.35) 

for any d > 1. 
1 

d(2d - 1) 
A:RP(d) > (4.36) 

These bounds can be proved by using lemmas 3.3 and 4.1 in the same way as the @-CP. 
More detail is given in appendix B. This result is a simple generalization of the bound (1 S )  
in Noble (1992). 

5. Comments 

In the present paper, we reformulate Gray’s duality theory for attractive spin systems with 
spin-flip rates given in the form (2.6) or (2.7). The argument can be extended to the system 
where each paaicle can hop to a vacant site with some rate. Such a process is called the 
exclusion process and its formal generator is given by 

where 

q(y) if U = x  

q ( x )  if u = y  
q(u) otherwise. 

Here h(x ,  y )  denotes the hopping rate from x to y and we will assume that it is symmetric 

h(x ,  Y )  = h(y ,  1). (5.3) 

For example, when we consider the nearest-neighbour hopping with a constant rate D ,  we 
let 1; i f l x - y l = l  

h ( x ,  Y) = otherwise. (5.4) 



3208 Makoto Kafori 

In this paper, we have defined the survival probability o(d) for A E Yo and have 
shown that it is submodular. We have applied the method of Griffeath (1975) which gave 
the criterion for the extinction /II = 60 of the original spin system by using submodularity. 
Although his method was originally used for coalescing processes, we have shown here that 
it also works well in Gray's version and have given lower bounds to the critical values for 
the 8-CP, the multi-particle creation model and the SRP. The coalescing duality theory has 
been useful for discussing not only the extinction (PI = So) but also the survival of the 
process (PI # 60). A typical example is the Holley-Liggett argument for contact processes 
(Holley and Liggett 1978, Liggett 1991a,b, Katori and Konno 1993). The basic properties 
of the processes defined in the state space T should be studied further. 
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Appendix A. Proof of proposition 2.1 

By definition (2.31) of H ( q ,  d) we have the following lemma. 

Lemma A.I. For A, B E T and q E X 

H h ,  AU S) = H ( q ,  A)H(v, E). (-4.1) 

In particular, 

H(rl, -4) = H ( q 7  A ( x ) ) H h ,  A@)") (A.2) 

for A E Y, x E Zd, where A(x) and d(x)" are defined by (2.24) and (2.25). 

Here we introduce an operator c (B)  with B E Y operating on the elements in Y such 
that 

c ( B ) A =  { A U  B : A  E A}. (A.3) 

and 

c (B)A(x)  = ~ x ( b 1  U B)A(x)  

if A(x) # 0 ,  where r,(B) was defined by (2.27) and (2.28). 
It is easy to confirm the following identities. 

(A.5) 
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Lemma A.2. 
(1) Let A E Y, B E ‘Y and q E X. If A # 0 and B # 0, then 

(2) Assume that d(x)  # 0, then 

q ( x ) [ H ( f ,  A(x)) - H ( q ,  A(x))l = 1 - H ( q ,  A(x)) (A.7) 

and 

(2q(X) - l ) [H(qX, A(x)) - H ( n ,  &))I 1 - H ( q ,  rx(0)d(x)) (AX) 

where q E X and q* is defined as (2.2). 

Combining lemmas A.l and A.2 gives the following identities. 

Lemma A.3. Assume that d(x)  # 0. 

(1 - tl(x))[H(qX, A(x)) - H ( q ,  A(x))l = H ( q ,  rx(0)A(x)) - H ( q ,  A(x)) ( A 9  

(A.10) 

(A.ll)  

(A.13) 
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Let B = rx(0)A(x) in (A.13) and use (A.4), (A.7) and (AS), We then have 

U 

Proposition 2.1 follows lemmas A.l, A.2 and A.3. 

Appendix E. Proof of theorem 4.4 

For the one-dimensional n-particle creation model, the survival probabilities of the dual 
process should satisfy 

{[u(a,A) - 4 4 ) )  + A[u(A U rx({x + 1, x + 2 , .  . . , x + n))A) - u(A)1 
x~Z:d(x)#0 

+ l [ o ( A U r x ( { x - n , . . . , x - 2 , x -  I})A)-o(d)])=O (B.1) 

for A E TO by lemma 3.3. Let 

A1 = { X  + 1, x + 2,. . . , x + n}  

Ax = { X  - n ,  . . , , X  - 2, x - 1) 

A3 = { X  + 2, x + 3 , .  . . , x  +n + 1) 

A:) = {x + 1,. . . . x  + k - 1,x + k  + 1,. . . . x  + k +n] 

for 2 6 k < n. Then by letting A = { { X I } ,  { [ x ] ,  A , )  and {A,] in @l), we have 

2hu(lIxJ7 Ai l )  - (2A+ l)u((Ix)D = 0 (B.2) 

.({Ail) +nu(llxll)+Ao({Az, [XI, Ail)  +Au(((xI,Ai, 4 1 )  

+ A ~ u ~ ~ ~ x ~ , A ~ , A ~ ~ ~ ~ - ~ ~ + ~ ) ~ A + I ) ~ ~ ~ ~ ~ ~ , A I ~ ~ = O  (B.3) 
k=2 



(B.lO) 
since ~ ( x  + i) E IO, 1) and the system is translation invariant. Therefore 

which means that 
(n + - l)a(IIxlD B 0 (B.ll) 

u({ [x) } )  = 0 if A < 1. 
1. By theorem 3.2, this implies h,MCM(n) 

The proof for AzRp(d) 2 l jd (2d  - 1) is given in the same way. 0 

References 

Baxter R J 1982 Exactly Solved Models in Sfatistical Mechanics (London: Academic) 
Didanan R 1989 Non-equilibrium lattice model: series analysis of steady states JL Sta. Phys. 55 997-1026 
Didanan R and Tom6 T 1991 First-order phase transition in a onedimensional non-equilibrium model Phys. Rev. 

D u m  R and Griffeath D 1983 Supercritical contact processes on 2 Ann Probab. 11 1-15 
D m t t  R and Neuhauser C 1994 Parride systems and reaction-diffusion equations A m  Pmb. 22 289-333 
Glauber R J 1963 Time-dependent statistics of the king model J, Math. Phys. 4 296307 
Gray L 1986 Duality for general atYactive spin systems with applications in one dimension Ann. Prob. 14 371-96 
Griffeath D 1975 Ergodic theorems for graph interactions Ad”. Appl. Prob. 7 179-94 
Holley R and Liggen T M 1978 The survival of contact processes Ann Pmb. 6 198-206 
Jensen I and Dickman R 1993 Timedependent permrbation theory for non-equilibrium lattice models 1. Stat. Phys. 

- 1994 Series analysis of the generalized contact process Physica 203A 17S88 
Katori M and KOMO N 1993 Bounds for the critical line of the 0-contact processes with I C 8 C 2 1. Phys. A: 

Liggett T M 1985 Inferacfing Particle Sysrem (New York Springer) 
- 1991a Spatially inhomogeneous contact processes Spatial Stochastic Processes ed K S Alexander and I C 

- 1991b The periodic threshold contact process Random Walks. Bmwnim Motion ond Interacting Particle 

Noble C 1992 Equilibrium behaviour of the sexual reproduction process with rapid diffusion A m .  Pmb. 20 724-45 
Suzuki M and Kubo R 1968 Dynamics of the Ising model near the critical point. I J. Pkys. Soc. Japan 24 51-60 

A 44 48334 

71 89-127 

Mah. Gen. 26 6597414 

Watkins (Boston: Birkhiiuser) pp 105-40 

Sy$tem ed R Dumu and H Kesten (Boston: BirkhEnser) pp 339-58 


